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Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evo-
lution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The
intrinsically intertwined effects of self focusing and dissipation of field energy caused by electron
trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse
direction but only one wavelength long and periodic in the propagation direction. From various
initial wave states, the width at focus, ∆m, relative to the initial width, ∆0, and the maximum field
amplitude at focus are shown to be a function of the growth rate of the transverse modulational
instability, γtpmi, divided by the loss rate of field energy, νE , to electrons escaping the trapping
region. With dissipation included, an amplitude threshold for self focusing, γtpmi/νE ∼ 1, is found
that supports the analysis of Rose [H. A. Rose, Phys. Plasmas 12, 12318 (2005)].

PACS numbers: 52.35.Fp, 52.35.Mw, 52.65.Ff, 52.65.Rr

The kinetic evolution of large-amplitude electron
plasma waves (EPWs) continues to play a central role
in fundamental theory and experiments of wave-particle
interactions [1–6] as well as in inertial confinement fusion
(ICF) and space plasmas. In ICF, large amplitude EPWs
reflect the laser light incident on ignition hohlraums via
stimulated Raman scattering (SRS), the backscatter of
an intense coherent light wave into a lower frequency light
wave by an EPW. SRS is the primary laser energy loss
mechanism in ignition experiments at the National Igni-
tion Facility (NIF) where, on some beams, up to 30% of
the light is backscattered.[7–9] In space plasmas, the sta-
bility of large-amplitude EPWs excited via two-stream
instabilities with a class of trapped electron distributions
referred to as electron phase space holes is of great inter-
est [10–12].

In laser-driven ICF, EPWs are driven predominantly in
spatially localized laser speckles with approximate width
given by the f/number of the focusing optics (f/8 for
NIF) times the laser wavelength (351 nm), and thus are
transversely localized by the excitation process. As pro-
posed by Rose [4, 13], these finite-width EPWs can self
focus due to the trapped particle modulational instabil-
ity (TPMI) with growth rate γtpmi. With particle-in-cell
(PIC) simulations, several authors have studied SRS in
finite-width laser speckles and have found structure con-
sistent with kinetic self focusing of EPWs [14–17]. How-
ever, in these studies the myriad of physical processes at
play can mask the essential features of EPW evolution
and make scaling studies nigh impossible. More carefully
controlled simulations of finite-width EPWs with an ex-
ternal driver have been performed with Vlasov [18] as well
as PIC [19] codes. Whereas the PIC studies [19] found

that the physical process dominating the transverse evo-
lution of the EPW was local damping of the EPWs at the
transverse edge by transiting electrons, the Vlasov stud-
ies [18] found that the EPWs self focused provided the
wave amplitude and transverse width were large enough.

The single process of electron trapping and de-trapping
in a finite-width EPW leads to both self focusing and loss
of field energy. We show in this Letter that the condition
γtpmi/νE ∼ 1, where νE is the field energy dissipation
rate, sets a threshold for EPW self focusing in qualita-
tive agreement with [4]. The self focusing leads to an
increase of EPW amplitude on axis as the EPW narrows
transversely. The phasespace evolution of trapped and
de-trapped electrons as the EPW narrows clearly illus-
trates the energy loss dynamics. We find that the loss
rate νE ∝ νsl where the sideloss rate νsl = τ−1sl = ve/∆0,
ve is the electron thermal velocity, and ∆0 is the FWHM
of the external driver field intensity.

Both PIC and Vlasov codes are used to study
externally-driven, two-dimensional (2D) EPWs with
kλDe = 1/3, a value typical for EPWs driven by SRS[7–
9]; here k = 2π/λ0 and λ0 are respectively the EPW
wavenumber and wavelength along the propagation di-
rection, x, and λDe = ve/ωpe is the electron Debye length
with ωpe the electron plasma frequency. The driver fre-
quency ω0 ≈ 1.2ωpe is chosen to satisfy the linear ki-
netic dispersion relation, with the resulting EPW phase
velocity vp ≈ 3.6ve. The linear Landau damping rate
ν0 = 0.026ωpe is an order of magnitude larger than the
rate at which we find the field energy to decay. Note,
Refs. [20] and [21] showed that the dominant detrap-
ping mechanism for EPWs localized in laser speckles is
sideloss, not collisions, justifying our use of collisionless
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simulations. We furthermore neglect ion dynamics since
TPMI is faster than processes such as ponderomotive self
focusing that require ions.

The PIC simulations were done with the 2D electro-
static PIC code BEPS, based on the UPIC framework
[22]; the 2D Vlasov simulations used LOKI [23]. The
two independent techniques give added confidence in the
results: PIC simulations have a long history in simulat-
ing these processes while Vlasov codes with no statisti-
cal noise allow clearer simulation of smaller wave ampli-
tudes. The system length Lx = λ0 along x. The BEPS
and LOKI boundary conditions for electrostatic fields
were periodic in all directions. The boundary conditions
were periodic for the LOKI distribution function and the
BEPS electrons in x. At the lateral boundaries in LOKI,
outgoing boundary conditions were applied; BEPS used
wide enough lateral simulation domains that the periodic
boundary conditions did not affect the wave evolution.
BEPS simulations used 16384 particles per cell; LOKI’s
typical maximum velocity was 7 − 8ve. We normalize
distance to λDe and electric fields to Te/(eλDe).

Traveling waves with approximately Gaussian trans-
verse profile were excited via an externally imposed elec-
tric field whose amplitude remained constant for ωpet =
100 with rise and fall times of one wave period [24]. The
waves were driven to amplitudes ranging over 10−3 <
eφ0/Te < 1, where the subscript 0 denotes the maximum
amplitude of the EPW reached at time t0 near when
the driver was turned off. Using the electron bounce
frequency, given by ωbe = k

√
eφ0/me, we find the ap-

proximate number of bounce periods ωbet0/2π <∼ 5 for
all amplitudes considered. Thus, one might expect the
distribution and the frequency shift to be in the sud-
den limit [21, 25, 26] although the actual distributions
in Vlasov simulations often are closer to the adiabatic
limit. In our interpretation of the simulation results, we
take the nonlinear frequency shift from trapped electrons,
δω/ωpe = −0.04

√
eφ0/Te, a value close to the adiabatic

one.

In all simulations, the waves were driven to large
enough amplitudes to exceed the bounce number thresh-
old Nb = (∆0/λDe)

√
eφ0/Te(kλDe/2π), established in

Ref. [20], for the wave to trap electrons and modify
the dispersion and damping rate [27]. We chose EPW
driver widths in the range ∆0 ∼ 100 − 600λDe based
on the typical laser speckle width, which is many Debye
lengths wide: fλL/λDe = 142f

√
Ne/(NcTe,keV ) ∼ 360

for f = 8, Te,keV = 1, λL = 351nm is the laser wave-
length, and Ne/Nc = 0.1, where Ne is the electron den-
sity, and Nc is the critical density. Note the scaling of
Nb with φ0 and ∆0 is the same as γtpmi/νE ; both are a
measure of trapping versus de-trapping rates.

A characteristic example of the wave evolution is
shown in Fig. 1 for a wave with eφ0/Te = 0.21 and
FWHM at t0 of ∆0 = 532λDe. Fig. 1a shows the wave as
the driver is turning off with nearly plane wave fronts. At
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FIG. 1: (color online) Snapshots of the rightward propagating
wave potential φ(x, y) for the LOKI simulation with eφ0/Te =
0.21 and ∆0 = 532λDe at the times: (a) ωpet = 100, (b) 1000
and (c) 1800. The field is symmetric about y = 0. In (d),
the time evolution of the maximum field Ex, which reaches
a maximum at ωpetm = 1800, is shown. In (e), (f), and
(g), snapshots at ωpet = 100, 1000, and 1800 respectively are
shown of the distribution as a function of y/λDe and 2.6 <
vx/ve < 4.6; the distribution is averaged over x and all vy < 0.
The phase velocity = 3.6ve is indicated by the red triangles.
The red dashed lines show the edge of the trapping region in

vx at vp ± 2
√
eφmax/Te.

ωpet = 1000, the wave fronts shown in Fig. 1b are clearly
bowed and the focusing has begun even though the max-
imum wave amplitude has not increased. At ωpet = 1800
shown in Fig. 1c, the wave is nearing its minimum width
and its maximum amplitude. Subsequently, the wave
diffracts and the wave amplitude decreases. Fig. 1d shows
the maximum amplitude on axis (y = 0) as a function of
time. The maximum is reached at tm ≈ 1800/ωpe.

Also shown in Figs. 1(e)-(g) is the evolution of the dis-
tribution of electrons that interact with the field at times
corresponding to snapshots of the field in Figs. 1(a)-(c).
The distribution has been integrated over x and vy < 0 in
order to highlight key features, hence the apparent asym-
metry in y. Electrons are introduced at the boundary
y = +Ly with a Maxwell-Boltzmann (MB) distribution.
Figs. 1(e)-(g) reveal how electrons enter the wave trans-
versely, gain energy as they become trapped in x while
advecting on average at ve, and then exit transversely
with a non-MB distribution in vx. The exiting distribu-
tion has more energy than the entering one which results
in a field energy loss rate, νE . This process, which is
accentuated as the field focuses transversely, limits the
amplitude of the field on axis.

A number of authors [4, 13, 18, 28] have modeled
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EPWs with an enveloped nonlinear Schrödinger equa-
tion. From the EPW dispersion relation and with the
eikonal expansion φ = (1/2)φ̃ exp (−iω0t+ ik0x) + c.c.,
one obtains(
∂t + vg∂x − iDx∂

2
x − iD⊥∂2y + iδω + ν

)
φ̃ = αφd(y, t),(1)

where ∂nj ≡ ∂n/∂jn, φ̃ is a slowly-varying envelope, vg is
the group velocity, δω is an amplitude-dependent, neg-
ative frequency shift [25, 26], ν is a heuristic damping
term, φd is the driving potential, α is a coupling con-
stant, and [for the Bohm-Gross dispersion relation and
the kinetic EPW dispersion] Dx and D⊥ are positive.
Coupling to harmonics is assumed negligible as they play
an insignificant role in the simulations.

We chose to study transverse phenomena without the
modulational sideband instability [29, 30] by choosing
Lx = λ0. With that restriction, ∂xφ̃ = 0. Then, as
shown by Rose [4, 13], one finds a transverse modula-
tional or self-focusing instability with maximum growth
rate γtpmi = |δω|/4, provided D⊥δω < 0. With ν > 0 to
account for the loss of field energy to escaping trapped
electrons, linear stability analysis finds growth only above
the threshold, γtpmi > ν. Solving Eq. (1) with ∂xφ̃ = 0
and ν = 0, we find similar behavior to Fig. 1(d) but
with the maximum value of Ex ∼ 4× its initial value
whereas the field on axis in the simulation [Fig. 1(c)]
is only ∼ 1.5× larger, clearly illustrating the significant
effect of damping. Correspondingly, ∆m/∆0 = .03 is nar-
rower in the model equation without damping compared
to ∆m/∆0 = .09 in the simulation. Unlike ponderomo-
tive self focusing, here the resonant wave-particle inter-
action leads both to a focusing via a transversely varying
frequency shift, δω, and to a loss rate, ν.

To quantify the effect of dissipation on the EPWs, we
measure the rate that the total field energy decays as the
escaping electrons take energy away. Fig. 2(a) shows
the time history of the total field energy for two LOKI
simulations: one just above the threshold for self focusing
and one just below. There are two phases to the loss rate.
The early rate, νE , decreases as a function of increasing
initial field amplitude; the late rate is much faster. For
amplitudes far below threshold, there is one fast rate.
The rates were determined by fitting to an exponential
decay as shown by the examples in Fig. 2(a) by the blue
and green lines.

Reference [18] showed that the field energy decreased
with time at a rate proportional to the sideloss rate νsl =
ve/∆0. The damping rate νE normalized to νsl is plotted
as a function of eφ0/Te in Fig. 2(b). Results for several
∆0 are shown. The decay rates for the early phase νE
are proportional to νsl = τ−1sl with a jump in value at
eφ0/Te >∼ .01. Note that, above eφ0/Te ' .01, the BEPS
rates are larger (by at most a factor of two) than the
LOKI rates.

To illustrate the time evolution of the EPW width,

we compute Ē2(y, t) = L−1x

∫ Lx

0
dx|Ex(x, y, t)|2. Fig. 3
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FIG. 2: (color online) (a) For ∆0 = 532λDe, the temporal
evolution of total field energy (normalized to the maximum
value) is shown for eφ0/Te = .025 (γtpmi/νE = 2.35) and
eφ0/Te = .014 (γtpmi/νE = 0.74). Exponential fits are shown
to the early and late decay by the blue and green lines re-
spectively. Vertical dashed black and red lines indicate tm
for eφ0/Te = .025 and eφ0/Te = .014 respectively. (b) The
energy loss rate, νE , normalized to the sideloss time, τsl. Dia-
mond/square markers denote LOKI/BEPS simulations. The
vertical dashed line indicates the threshold value of eφ0/Te.
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FIG. 3: (color online) Ē2(y, t) for ∆0 = 532λDe and (a)
eφ0/Te ≈ 0.014 (b) eφ0/Te ≈ 0.21. Plot (b) is from the
LOKI simulation shown in Fig. 1. In (c) and (d), the time
dependence of the maximum field on axis (solid line and RHS
axis) and ∆ (dash line and LHS axis) are shown for the same
conditions as in (a) and (b) respectively. The blue lines in
(c) and (d) shows the linear fit to ∆ used to determine the
localization velocity, Vl.

shows Ē2(y, t) for simulations with two different initial
amplitudes. Fig. 3(a) shows an EPW that damps and
transversely localizes before self-focusing affects the wave
profile. Fig. 3(b) is sufficiently wide and intense to reach
a narrow focus limited by diffraction and sideloss at tm
after which the field energy is rapidly depleted. By as-
suming that ∆ = ∆t1 + Vl(t− t1), we compute the local-
ization velocity Vl/ve where t1 is a time several bounce
times after the drive is turned off and before tm.

Fig. 4(a) shows the dependence of Vl on eφ0/Te for
a variety of initial EPW widths, ∆0. For low ampli-
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FIG. 4: (color online) a) Localization velocity versus wave
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The relative time (tm − t0)/τsl, (c) the peak Ex(y = 0) over
all time divided by Et0 , and (d) ∆m/∆0, all as a function of
γtpmi/νE . Diamond markers are LOKI simulations; square
markers are BEPS simulations. The vertical dashed lines in
(b)-(d) indicate the threshold value of γtpmi/νE . The horizon-
tal dashed lines indicate the expected values below threshold.

tudes, Vl depends on ∆0 which indicates that diffrac-
tion is important for the narrower widths [18]. For high
amplitudes, Vl is independent of ∆0 and approaches the
electron thermal velocity in magnitude. That is, an un-
trapped electron needs a significant transverse velocity to
become trapped. On the other hand, trapped electrons
are detrapped more quickly than the sideloss rate would
predict. We also found that Vl is sensitive to kλDe (not
shown). However, the ratio of Vl/ve to γtpmi/ωpe as a
function eφ0/Te is approximately constant for different
kλDe; this scaling of the localization velocity applies at
least over the range 0.25 < kλDe < 0.4.

We define a threshold parameter, γtpmi/νE , calculated
using νE from Fig. 2(b). Three important features of
EPW self focusing are shown to be a function of this pa-
rameter: the time that the field achieves its maximum
value on axis (tm), the peak value of the maximum field
on axis (Epeak), and the width of the field intensity (∆m)
at tm. Figs. 4(b-d) show that these quantities, normal-
ized and scaled, are nearly independent of ∆0 and depend
only on the value of the threshold parameter, γtpmi/νE .
Plotted against γtpmi/νE , one sees that tm − t0 jumps
above 0 when the self-focusing threshold is exceeded, that
is γtpmi/νE >∼ 1. Fig. 4(c) shows how Epeak increases
above Et0 as a function of γtpmi/νE . Below threshold,
the field on axis after a bounce period or two only de-

creases after the drive is turned off. Fig. 4(d) shows that
the EPW narrows to a relative width ∆m/∆0 at tm that
is independent of ∆0 and scales as one expects from an
instability, that is, it has a threshold and reaches a limit
determined in this case by diffraction and sideloss. For all
cases considered, Epeak has a smaller value with a larger
width ∆m at focus which occurs at an earlier time tm in
the simulation than in the model Eq. (1) with ν = 0.
Below and near threshold, EPWs with smaller ∆0 local-
ize less proportionately. This might be expected because,
as noted in [18], diffraction opposes localization and the
electron distribution in the trapping region tries to evolve
to a more uniform distribution transversely as the elec-
trons travel laterally. These effects are less important for
bigger ∆0.

The LOKI and BEPS results are in substantial agree-
ment. The differences are currently under investigation.
For example, the reader may notice from Fig. 4(a) that
the BEPS simulations extend to larger initial wave ampli-
tudes, φ0, and thus extend to larger γtpmi. Nonetheless,
the LOKI simulations achieve larger values of the pa-
rameter γtpmi/νE in Figs. 4(b-d) because of the smaller
value of νE as shown in Fig. 2(b). Note also that Epeak

achieves larger values at later times tm in LOKI than
in BEPS simulations. That behavior is also consistent
with solutions of Eq. (1) with smaller damping rates.
In part, the differences arise also from growth of fila-
ments from the larger initial transverse nonuniformities
in BEPS which can cause the field to break into multiple
foci at large amplitude, thus limiting the peak amplitude
achievable in a single focus. The most physical result
depends on the actual physical EPW initial fluctuation
levels which neither simulation method attempts to ad-
dress in this paper.

For γtpmi/νE > 1, the overall effect on SRS should
be to spatially limit the backscatter to a smaller frac-
tion of the incident light power than a fluid simulation,
since the maximum wave amplitude is limited to small in-
creases while the transverse size decreases substantially.
Thus, the overlap of the speckle-wide light waves and the
narrower EPWs in space is reduced.

We have presented two-dimensional kinetic simulations
showing the self focusing and dissipation of finite-width,
nonlinear EPWs. We measured the rate at which the
transverse wave envelope decreases in width (the trans-
verse localization velocity) and the rate at which the total
field energy decreases. The threshold for the onset of self
focusing was shown to depend on γtpmi/νE in agreement
with Rose [4]. The dispersion relation for EPWs in [4] as-
sumes that phase matching is maintained with the light
waves. As a consequence, [4] also predicts stability for
kλDe > 0.46 and stability for even lower values of kλDe

as the wave amplitude eφ0/Te increases. In our simula-
tions with the free wave dispersion for EPWs, we find no
stability region for kλDe > 0.46 nor a second stability
region for large eφ0/Te.
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